The Case for Mindless Economics
Faruk Gul
and
Wolfgang Pesendorfer
Princeton Univ ersity
November 2005
Abstract
Neuroeconomics proposes radical c hanges in the methods of economics. This essay dis-
cusses the propo sed changes in methodology, together with the the neuroeconomic critique
of standard economics. We do not assess the contributions or promise of neuroeconomic
research. Rather, we oer a response to the neuroeconomic critique of standard economics.
This research was supported by grants from the National Science Foundation. We thank Drew
Fudenberg and Philipp Sadowski for helpful comments and suggestions.
1. Introduction
Neuroeconomics proposes radical changes in the m ethods of economics. This essay dis-
cusses the proposed c hanges in methodology, together with the the neuroeconomic critique
of standard economics. Our denition of neuroeconomics includes research that makes no
specic reference to neuroscience and is traditionally referred to as psychology and eco-
nomics.Weidentifyneuroeconomicsasresearch that implicitly or explicitly makes either
of the following two claims:
Assertion I: Psychological and physiological evidence (such as descriptions of hedonic
states and brain processes) are directly relevant to economic theories. In particular, they
can be used to support or reject economic models or even economic methodology.
Assertion II: What makes individuals happy (‘true utility’) diers from what they
choose. Economic welfare analysis should use true utility rather than the utilities gov erning
choice (choice utility).
Neuroeconomics goes beyond the common practice of economists to use psychological
insights as inspiration for economic modeling or to take into account experimental evidence
that challenges behavioral assumption s of economic models. Neuroeconomics appeals di-
rectlytotheneuroscienceevidencetorejectstandardeconomicmodelsortoquestion
economic constructs. Camerer, Loewenstein and Prelec (2005) (henceforth CLP (2005))
express the neuroeconomics critique as follows:
“First, we show that neuroscience ndings raise questions about the usefulness of some
of the most common constructs that economists commonly use, such as risk aversion,
time preference, and altruism.” (p. 31-32)
In section 5 of this essay, we argue that Assertion I of the neuroeconomic critique mis-
understands economic methodology and underestimates the exibility of standard models.
Economics and psychology address dieren t questions, utilize dierent abstractions, and
address dieren t types of empirical evidence. Neuroscience evidence cannot refute eco-
nomicmodelsbecausethelattermakenoassumptions and draw no conclusions about the
physiology of the brain. Conversely, brain science cannot revolutionize economics because
1
the latter has no vehicle for addressing the concerns of economics. We also argue that the
methods of standard economics are much more exible than it is assumed in the neuroe-
conomics critique and illustrate this with examples of how standard economics deals with
inconsistent preferences, mistake s, and biases.
Neuroeconomistsimportthequestionsandabstractions of psychology and re-interpret
economic models as if their purpose we re to address those questions. The standard eco-
nomic model of choice is treated as a model of the brain and found to be inadequate. Either
economics is treated as amateur brain science and rejected as such or brain evidence is
treated as economic evidence to reject economic models.
Kahneman (1994) asserts that subjectivestatesandhedonicutilityare“legitimate
topics of study”. This may be true, but such states and utilities are not useful for calibrating
and testing standard economic models. Discussions of hedonic experiences play no role in
standard economic analysis because economics makes no predictions about them and has no
data to test such prediction. Economi sts also lack the means for integrating measurement
of hedonic utility with standard economic data. Therefore, they have found it useful to
conne themselves to the analysis of the latter.
The neuroeconomics program for change in economics ignores the fact that economists,
even when dealing with questions related to those studied in psychology, have dierent
objectiv es and address dierent empirical evidence. These fundamental dierences are
obscured by the tendency of neuroeconomists to describe both disciplines in very broad
terms.
“Because psychology systematically explores human judgement, behavior, well-being
it can teach us important facts about how humans dier from the way traditionally
described by economics, (Rabin (1998)).
Note the presumption that across disciplines there is a single set of constructs (or facts) for
describing ho w humans are. Rabin omits that economics and psychology study dierent
kinds of beha vior and, more importantly, focus on dierent variables that inuence behav-
ior. Realistic assumptions and useful abstractions when relating visceral cues to behavior
may be less realistic or useful when relating behavior to market variables. Consider the
following two statements:
2
“Much aversion to risks is driven by immediate fear responses, which are largely trace-
able to a small area of the brain called the amygdala;(Camerer, Loewenstein and
Prelec (2004), p. 567 (henceforth CLP (2004)).
“A decision-maker is (globally) risk averse, [...] if and only if his von Neumann-
Morgenstern utility is concave at the relevant (all) wealth levels.” Ingersoll (1987).
Which of these statements is (more) true? Which provides a better understanding of
risk aversion? Most researchers recognize the various terms in the second statement as
abstractions belonging to the specialized vocabulary of economics. Though less apparent,
the language of the rst statement is equally specialized in its use of discipline-specic
abstractions. The terms ‘immediate fear’ and ‘traceable’ are abstractions of psychology
and neuroscience. Moreov er, the term ‘risk aversion’ represents adierent abstraction in
the t wo statements above. For Ingersoll, risk aversion is an attitude towards monetary
gambles. For CLP (2004), risk aversion seems to be a much broader term that is readily
applied to decisions involving plane tra vel. It mak es little sense to insist that the economic
notion of risk aversion is false while the psychological notion is true.
We discuss Assertion (II) of the neuroeconomic critique in section 6. We argue that the
assertion misunderstands the role of welfare analysis in economics. Standard economics
identies we lfare with choice, i.e., a c h ange (in consumption) is dened to be welfare
improving if and only if, given the opportunity, the individual would choose to make that
change. The neuroeconomic critique of standard w elfare analysis mistakes the economic
denition of welfare for a theory of happiness and proceeds to nd evidence against that
theory. The standard denition of we lfare is appropriate because standard economics has
no therapeutic ambition; it does not try to improve the decision-maker but tries to evaluate
how economic institutions mediate (perhaps psychologically unhealthy) behavior of agents.
Standard w elfare economics functions as a part of positive economics. It provides a
benchmark for the performance of economic institutions at aggregating individual prefer-
ences. Economists use welfare analysis to explain the persistence of some (ecient) insti-
tutions or to identify problems and anomalies in models of other (inecient) institutions.
For example, observing that an existing institution leads to Pareto ecient outcomes may
increase the researcher’s condence in his model, while noting that the institution leads
3
to Pareto ineciency ma y lead researchers to seek explanations for the persistence of that
institution. Within this conception of welfare econom i cs, what is relevant are the agents’
interests (or preferences) as perceived by the agents themselves. An institution’s eective-
ness at maximizing the true happiness of its participants cannot justify the persistence of
that institution if the criterion for true happiness conicts with the participants’ revealed
preferences. After all, only the latter plays a role in behavior.
Neuroeconomists expect recent developments in psychology and brain science to yield
answers to age-old philosophical questions such as “what is happiness?”; “should we be
willing to take actions contrary to a person’s wishes if we happen to know that such actions
will make them happier?” andinsistonanewnotionofwelfarebasedontheseanswers.
Perhaps a therapist or a medical professional is guided by his answers to the two ques-
tions above; he ma y fashion his advice to advance the perceived objectives of the patient
or to increase the patient’s true happiness, as dened by the therapist himself.
1
Neu-
roeconomic welfare analysis assumes a relationship between the economist and economic
agents similar to the therapist-patien t relationship. Normative economics is therefore iden-
tied with eective therapy. The economist/therapist can inuence individuals’ happiness
by dispensing compelling advice or by inuencing the decisions of powerful (and perhaps
paternalistic) intermediaries. For example, Kahneman (1994) suggests that there is
“...a case in favour of some paternalistic interventions, when it is plausible that
the state knows more about an individual’s future tastes than the individual knows
presently.”
Hence, the goal of welfare economics and perhaps the goal of all economics is to aect
changes that result in greater happiness to all. In this endeavor neuroeconomists plan to
enlist the support of the state a stand-in for a benign therapist who may, on occasion,
conceal facts and make decisions on behalf of the individual’s future selve s.
Neuroeconomists seek a welfare criterion that is appropriate f or an economist who is
part social scientist and part advocate/therapist; someone who not only analyzes economic
1
This description might ov er-state the therapist discretion. Either a professional code or market forces
ma y limit the extent to which he can pursue the patient’s true happiness. Hence, the two philosophical
questions above may or ma y not ha ve some relevance to the therapist. Our contention is that they have
none for economists.
4
phenomena but also plays a role in shaping them. Neuroeconomists assert that the stan-
dard economic welfare criterion is n ot adequate for this task. Our response to this criticism
is simple: the standard welfare criterion is not in tended to facilitate advocacy for therapeu-
tic interv e ntions. The standard approac h assumes a separation between the economist’s
roleassocialscientistandtherolethatsomeeconomistsmayplayasadvisorsoradvocates.
This separation is valuable because it enables economists to analyze and compare dierent
institutions without having to agree on the answers to dicult philosophical questions.
Besides the t wo assertions stated above, neuroeconomists pose an additional chal-
lenge to standard economics: they argue that economics should tak e advantage of recent
improvements in neuroscience, in particular, improvements in measurements. They claim
that these improvements may facilitate the unication of economics and brain science:
“This ‘rational choice’ approach has been enormously successful. But now advances
in genetics and brain imaging (and other techniques) have made it possible to observe
detailed processes in the brain better than ever before. Brain scanning (ongoing at
the new Broad Imaging Center at Caltech) shows which parts of the brain are active
when people make economic decisions. This means that we will eventually be able to
replace the simple mathematical ideas that have been used in economics with more
neurally-detailed descriptions.” Camerer (2005).
We discuss the unication argument in section 7. Our main point is that the separation
of economics and brain science is a consequence of specialization around dierent questions
and dierent data; it has little to do with technological limitations in measuring brain
activity. Therefore, there is no reason to expect improvements in such technologies to lead
to a unication.
In this essay, we d o not assess the contrib u tions or promise of neuroeconomic researc h.
Instead, we oer a response to the neuroeconomic critique of standard economics. Our
conclusion is that the neuroeconomic critique fails to refute an y particular (standard)
economic model and oers no challenge to standard economic methodology.
Inthenextsection,wedene the standard approach (or standard economics) and the
neuroeconomics approach. In section 3, we discuss how the dierent goals of psyc hology
and of economics necessitate dierent abstractions. As an example, we contrast the eco-
nomic concepts of “complements” and “externalities” with the psychological concept of a
5
“cue.” In section 4, we presen t an example of eac h approach to illustrate our classica-
tion and highlight the dierences in the concerns and abstractions of standard economics
and neuroeconomics. In sections 5, 6, and 7 we discuss the three main arguments of the
neuroeconomics critique. Section 8 conta ins our closing remarks.
2. The Two Approac hes: Denitions and Objectives
2.1 Standard Economics
The standard approach to behavioral economics extends standard choice theoretic
methods to analyze variables that are often ignored. Some of these extensions are modest
and entail little more than specifying a richer set of preferences over the same economic
consequences. Others necessitate novel descriptions of the relevant economic outcomes.
Yet, in most cases, the subsequent analysis is very similar to what can be found in a
standard graduate textbook.
In the standard approach, the term utility maximization and choice are synonymous.
A utility function is always an ordinal index that describes ho w the individual ranks
various outcomes and how he behaves (chooses) given his constraints (a vailable options).
The relevant data are revealed preference data; that is, consumption choices give n the
individual’s constraints. These data are used to calibrate the model (i.e., to identify
the particular parameters) and the resulting calibrated models are used to predict future
choices and perhaps equilibrium variables such as prices. Hence, standard (positive) theory
identies choice parameters from past behavior and relates these parameters to future
behavior and equilibrium variables.
Standard economics focuses on revealed preference because economic data come in
thisform. Economicdatacan—atbest—revealwhattheagentwants(orhaschosen)
in a particular situation. Suc h data do not enable the economist to distinguish between
what the agent intended to choose and what he ended up choosing; what he chose and
what he ought to ha ve chosen. The standard approach provides no methods for utilizing
non-choice data to calibrate preference parameters. The individual’s coecient of risk
aversion, for example, cannot be identied through a physiological examination; it can
only be rev ealed through choice behavior. If an economist proposes a new theory based on
6
non-choice evidence then either the new theory leads to novel behavioral predictions, in
which case it can be tested with revealed preference evidence, or it does not, in which case
the modication is vacuous. In standard economics, the testable implications of a theory
are its content; once they are identied, the non-c h oice evidence that motivated a novel
theory becomes irrelevant.
As its welfare criterion, standard economics uses the individuals’ choice beha vior, that
is, revealed preferences. Alternative x is deemed to be better than alternative y if and only
if, given the opportunity, the individual would c hoose x over y.
2
Hence, welfare is dened
to be synonymous with choice behavior.
In standard economics, an individual’s decisions may improve when a constraint is
relaxed. For example, an agent may make better decisions if he is given better information,
more resources, or more time to make his decision. How ever, standard economics has no
therapeutic am bition, i.e., it does not try to evaluate or improve the individual’s objectives.
Economics cannot distinguish between choices that maximize happiness, choices that reect
a sense of duty, or choices that are the response to some impulse. Moreo ver, standard
economics takes no position on the question of which of those objectives the agent should
pursue.
The purpose of economics is to analyze institutions, such as trading mechanisms and
organization structures, and to ask how those institutions mediate the int erests of dif-
ferenteconomicagents. Thisanalysisisuseful irrespective of the causes of individuals’
preferences. Standard economics ignores the therapeutic potential of economic policies
and leaves it to therapists, medical professionals, and nancial advisors to help individuals
rene their g oals.
2.2 Neuroeconomics
“‘This new approach, which I consider a revolution, should provide a theory of how
people decide in economic and strategic situations,’ said Dr. Aldo R ustichini, an
2
The welfa re statement is made relative to the constraints the agent faces. For example, the agent
ma y be imperfectly informed of the consequences of his actions. In that case, the choice of x is welfare
maximizing given the agent’s information. If the agent had better information, he might choose y and
hence y is the welfare maximizing choice for a better informed agent. See our discussion of mistake s in
Section 5.1.
7
economics professor at the University of Minnesota. ‘So far, the decision process has
been for economists a black box.
3
Later, in the same article, the author explains that
“In a study published in the current issue of the journal Science, Dr. Cohen and his
colleagues,includingDr.AlanG.SanfeyofPrinceton,tookimagesofpeoplesbrains
as they played the ultimatum game, a test of fairness between two people. In the
ultimatum game, the rst player is given, say, £10 in cash. He must then decide how
muchtogivetoasecondplayer. Itcouldb5,thefairestoer, or a lesser amount
depending on what he thinks he can get away with. If Player 2 accepts the oer, the
money is shared accordingly. But if he rejects it, both players go away empty-handed.
It is a one-shot game, a nd the players never meet again. Most people in the shoes of
Player 2 refuse to take amounts under £2 or £3, Dr. Cohen said. They would rather
punish the rst player than feel cheated. ‘But this makes no economic sense,’ he said.
‘You’re better o with something than nothing.’”
As the quotes abo ve illustrate, neuroeconomics emphasizes the physiological and psycho-
logical processes underlying decision-making. Theobjectiveistorelatethedecision-making
process to physiological processes in the brain or to descriptions of emotional experiences.
From its predecessor, psychology and economics,
4
neuroeconomics inherits the idea of
modeling the decision-maker as a collection of biases and heuristics susceptible to system-
atic errors (eects) and inconsistencies (reversals). Hedonic utilities (true utilities) are
primitives, dened independen tly of behavior, while behavior is determined by biases and
heuristics. The focus is on showing how factors that have no eect on these true utilities—or
at least aect these utilities in a manner that is ignored by standard economics—inuence
behavior.
Neuroeconomics is therapeutic in its ambitions: it tries to improve an individual’s
objectives. The central questions of neuroeconomists are: How do individuals make their
c hoices? How eective are they at making the choices that increase their own wellbeing?
By con trast, economists analyze how the choices of dierent ind ividuals interact within a
particular institutionalsetting,giventheirdiering objectives.
3
“Brain Experts Now Follo w the Money,” by Sandra Blak eslee, New York Times, June 17, 2003.
4
This line of inquiry is often referred to as behavioral economics. We have avoided using this term,
in order to distinguish it from standard economics models that deal with similar behavioral issues.
8
3. Dierent Objectives Demand Dierent Abstractions
Neuroeconomistsarguethatthetimeisripeforthemethodologyofeconomicsto
be brought in line with the methods and ideas of psychology and neuroscience. The
neuroeconomic critique begins with the implicit or explicit assumption that economics,
psychology and possibly other social sciences all address the same set of questions and
dier only with respect to the answers they provide:
“More ambitiously, students are often bewildered that the models of human nature of-
fered in dierent social sciences are so dierent, and often contradictory. Economists
emphasize rationality; psychologists emphasize cognitive limits and sensitivity of choi-
ces to contexts; anthropologists emphasize acculturation; and sociologists emphasize
norms and social constraint. An identical question on a nal exam in each of the
elds about trust, for example, would have dierent correct answers in each of the
elds. It is possible that a biological basis for behavior in neuroscience, perhaps com-
bined with all-purpose tools like learning models or game theory, could provide some
unication across the social sciences (cf. Gintis, 2003).” CLP (2004) p. 572-3.
Contrary to the view expressed in the quoted paragraph, economics and psychology do
not oer competing, all-purpose models of h uman nature. Nor do they oer all-purpose
tools. Rather, each discipline uses specialized abstractions that have proven useful for
that discipline. Not only is the word trust muc h less likely to come up in an economics
exam than in a psychology exam, but when it does appear in an economics exam, it means
something dierent and is associated with a dierent question, not just a dierent answer.
Far from being an all-purpose tool, game theory is a formalism for stripping away all
strategically irrelevant details of the context, details that Gintis describes as central for
psychologists. Similarly, a learning model in economics is dierent than a learning model in
psychology. For an economist, a theory o f learning m ight be a process of Bayesian inference
in a multi-armed bandit model. This theory of learning is useful for addressing economic
phenomena such as patent races but may be inappropriate for cognitive psychologists.
Once the goals of economics and psyc hology are stated in a manner that makes it
seem as if the two disciplines address the same questions and deal with the same empirical
9
evidence, it becomes reasonable for neuroeconomists to inquire which discipline has the
better answers and the better tools for providing answers.
CLP assert that
“neuroscience ndings raise questions about the usefulness of some of the most com-
mon constructs economists commonly use, such as risk aversion, time preference, and
altruism,”
Risk a version and time preference are indispensable concepts for modern economics. The
authors really intend to question the validity of these concepts; in essence, they are assert-
ing that there is no such thing as risk aversion or time preference. ‘Time preference’ and
‘risk ave rsion are useful economic abstractions just as ‘cue-conditioned cognitive process’
or ‘hedonic forecasting mec hanisms’ are abstractions useful in neuroscience and psychol-
ogy. The truth (or falsehood) of an abstraction cannot be evaluated independently; the
only wa y to assess these abstractions by assessing within each discipline the theories
that use them.
Consider the reverse procedure of using evidence from economics in brain science.
Suppose that we nd that drug addicts generally satisfy the strong axiom of revealed
preference in their demand behavior. Can w e argue that since addicts maximize some
utility function, there are no separate brain functions and conclude then that the “limbic
system” does not exist? This line of reasoning is, of course, absurd because brain science
takes no position on whether c hoices satisfy the strong axiom of revealed preference or not.
Theargumentthatevidencefrombrainsciencecanfalsifyeconomictheoriesisequally
absurd. Hsu and Camerer write,
“For neuroeconomists, knowing more about functional specialization, and how regions
collaborate in dierent tasks, could substitute familiar distinctions between categories
of economic behavior (sometimes established arbitrarily by suggestions which become
modeling conventions) with new ones grounded in neural detail. For example, the
insula activity noted by Sanfey et al. in bargaining is also present when subjects
choose between gambles with ambiguous odds of winning, relative to ‘risky’ gambles
with known odds (Ming Hsu and Camerer, 2004).”
Economists who are not interested in the physiological mechanism behind economic de-
cisions will not nd the level of insula activity useful for classifying behavior. What Hsu
10
and Camerer consider “distinctions based on arbitrary modeling conv entions” are likely to
be much more useful to economists, given their own objectives and given the type of data
that is available to them.
The presumption that economics and psyc hology have the same goals and rely on the
same data facilitates three types of critiques of standard economics:
1. Failure of Rationality: Economic models of choice fail to tak e account of psychological
or physiological phenomena or evidence.
2. Inadequacy of Rationality: Rationality dened to mean some sort of consistency in
the behavior and preferences of individuals is not an adequate starting point for
economics because consistency of behaviors does not mean that these behaviors will
lead to good outcomes.
3. Unication: Recent advances in neuroscience provide ric h new sources of data. Eco-
nomics must take advantage of these developments.
We address these arguments in sections 5, 6, and 7 respectively. We illustrate in
the remainder of this section how the dierent goals psychology and economics and the
dierent data a vailable to these two disciplines necessitate dierent abstractions.
3.1 A Cue or a Complement?
The concept of a “cue” oers a good illustration of how abstractions from psychology
are inappropriate for economics and, conversely, how the corresponding economic con-
cepts are inappropriate for psychology and neuroscience. Psyc hologists call a stimulus
that triggers a desire or a cra v ing for a particular consumption or activit y a “cue” or a
“cue-elicited craving.”
5
For example, eating a hamburger may be a cue that triggers a
craving for French fries. Drinking coee may trigger a craving for cigarettes. Visiting the
location of previous drug consumption may trigger a craving for drugs. As the example of
drug consumption illustrates, cues ma y be determined endogenously through a process of
conditioning.
6
Psychologists nd the concept of a cue useful because they think of cues as
5
See Laibson (2001) for an economic model that describes psychological cues.
6
The agen t frequently consumed the drug at a particular location and - as a result of this consumption
history - being in that location triggers a cra v ing for drugs. Similarly, the agent frequently smoked a
cigarette while drinking coee in the past. This - perhaps incidental - pairing of consumption goods in the
past implies tha t coee consumption triggers a craving for cigarettes.
11
exogenous variables in experimental settings. They investigate the physiological mecha-
nisms behind the development of and the reaction to cues. For economists, the notion of a
cueisnotusefulbecauseitlumpstogether two distinct economic phenomena: complements
and externalities.
Hamburgers and fries are complementarygoodsjustlikeforksandknives. Forksdonot
generate a craving for knives and therefore psy chologists w ould not consider the fork/knife
complement arity to be the same phenomenon as the hamburger/fries complemen tarity. For
economists the physiological distinction between the two examples is unimportant. What
matters is that demand for those goods responds in a similar way to price changes.
Another form of complementarities is the one associated with non-separable prefer-
ences over consumption streams. For example, consider an individual who enjoys building
matchstick models and, as a result of this hobb y, dev elops a complementary demand for
matches and glue. The complementary demand for matches and glue is acquired through
learning a hobby while the complemen tary demand for coee and cigarettes is acquired
through a process of conditioning. For a psychologist, who is in terested in the underlying
causes of preferences, the coee/cigarette and glu e/matc hsticks complementarities repre-
sent distinct phenomena. The rst is an example of conditioning while the second is an
example of learning. However, both examples are similar in terms of the variables that
economists observe and care about (prices, demand).
In the cue-response pairs above, the individual controls both the cue and the response.
Ho wever, some cues are not under the con trol of the individual. For example, a former drug
addict may experience a craving for drugs as he observes d rug dealers in his neighborhood.
In econom ics, this eect is captured by the notion of an externality. For economists, the
neighborhood eectondrugaddictsissimilartotheeect of an improved network of roads
on car buyers. Both are examples of an externality that causes a shift in the demand for a
good. For psychologists, the craving for drugs b y seeing drug-dealers in the neighborhood
is similar to the craving for cigarettes caused by drinking coee. On the other hand, they
would consider it absurd to describe the car buying example and drug addiction example
as being the same phenomenon because the underlying psychological mechanisms are very
dierent. It would be equally absurd to insist that economists treat the neighborhood
12
eect on drug d emand as the same phenomenon as the cigarette/coee complementarity.
In economics, there are important reasons for distinguishing between complemen tarities
and externalities. For example, externalities often suggest market failures while comple-
mentarities do not.
Economists and psychologists use dierent abstractions because they are interested in
dierent phenomena and must confront dierent data. ‘Cue-triggered responses’ is not a
useful abstraction in economics because it lumps togeth er distinct economic phenomena.
Conversely, the economic abstraction of a complement is not useful in psyc hology because
it lumps together phenomena with dierent psychological mechanisms.
4. The Two Approaches: Examples
In this section, w e illustrate the standard approach to nove l behavioral phenomena
with a discussion of the paper “Temporal Resolution of Uncertainty and Dynamic Choice
Theory,” by Kreps and Porteus (1978). We illustrate the neuroeconomics approach w ith
a recent paper by oszegi and Rabin (2005) entitled “Reference-Dependen t Utility.”
4.1 The Standard Approach: Resolution of Uncertainty
An individual goes to the hospital on Friday to have a biopsy of a suspicious mass. In
case the biopsy detects cancer, surgery will be scheduled for the following Monday. When
given a choice between waiting a few hours to learn the result or going home and learning
the result on Monday, the individual chooses to wait. The decision to incur the cost of
waiting seems plausible but is inconsistent with standard theory. Standard expected utility
maximizers are indierent to the timing of resolution of uncertainty.
In “Temporal Resolution of Uncertainty and Dynamic Choice” Kreps and Porteus
(1978) (henceforth Kreps-Porteus) expand the standard model of decision making under
uncertaint y to include anxious individuals such as the patien t in the example above.
7
Suppose there are two dates t =1, 2andanite set of prizes Z that will be consumed at
date 2 (“surgery” or “no surgery” in the example above). Standard decision theory under
uncertaint y denes lotteries over Z as the choice objects. But this description does not
7
The relationship bet ween anxiety and preference for early or late resolution of uncertainty is explored
and further developed in the work of Caplin and Leahy (2001).
13
dierentiate between lotteries that resolve at date 1 and lotteries that resolve at date 2 -
and therefore cannot capture the anxious patient described above.
Let D
2
be the lotteries o ver Z and let D
1
be lotteries over D
2
.Hence,D
1
is the
set of lotteries over lotteries over Z. We refer to elemen ts of D
1
as date-1 lotteries and
elements of D
2
as date-2 lotteries. We can describe the problem of the anxious patient
asachoicebetweentwolotteriesinD
1
. Suppose the p robability of surgery is α.Waiting
for the results until Monday corresponds to a date-1 lottery where, with probability 1,
the individual will face the date 2 lottery that yields surgery with probability α and no
surgery with probability 1 α. Learning the result on Friday corresponds to the date-1
lottery where, with probability α, the individual faces a date-2 lottery that yields surgery
with probability 1 and, with probability 1 α, the individual faces a date-2 lottery that
yields surgery with probability 0.
Let p, q denote elements in D
2
and µ, ν denote elements in D
1
.Forsimplicity,we
only consider lotteries with nite supports. Let µ(p)betheprobabilitythatµ chooses the
lottery p D
2
. Standard expected utility theory identies µ with the implied probability
distribution over prizes, i.e., the probability distribution q D
2
that assigns probability
q(z)=
X
D
2
µ(p)p(z)()
to prize z Z. Therefore, standard expected utility theory cannot accommodate the
cancer patient’s strict preference for learning the test results on Friday.
The Kreps-Porteus model takes as a primitive an individual’s preferences º (choices)
over the date-1 lotteries, D
1
. Some date-1 lotteries yield a particular date-2 lottery with
probability 1. We call such lotteries degenerate date-1 lotteries. In the example above,
learning the test results on Monday corresponds to such a lottery. Restricting the pref-
erence º to degenerate date-1 lotteries, induces a preference on D
2
, the date-2 lotteries.
Let δ
p
denote the date-1 lottery that yields the date-2 lottery p with probability 1. The
induced preference º
2
(on D
2
)isdened as follo ws:
p º
2
q if and only if δ
p
º δ
q
14
Kreps-Porteus assume that º and º
2
satisfy the standard von Neumann-Morgenstern
axioms: hence, the preferences are complete, transitive, satisfy the independence axiom,
and satisfy an appropriate continuity assumption. Kreps-Porteus sho w that the preferences
on D
1
satisfy those assumptions if and only if there are utility functions u and W such
that µ º ν if and only if
X
D
2
W
Ã
X
zZ
u(z)p(z)
!
µ(p)
X
D
2
W
Ã
X
zZ
u(z)p(z)
!
ν(p)
The formula above applies the standard expected utility formula twice. The term in
brackets is the expected utility formula for lotteries that resolve at date 2 whereas the
outer term is the expected utility form u la for lotteries that resolve at date 1.
The Kreps-P orteus formalism yields a precise denition of a new phenomenon: pref-
erence for early (or late) resolution of uncertainty.Letµ, ν be two elements of D
1
that
imply the same distribution over prizes. The lottery µ resolves all uncertainty at date 1
while the lottery ν resolves all uncertainty at date 2. In the example above, µ corresponds
to the situation where the patient learns the test result on Friday and ν corresponds to the
situation where the patient learns the test result on Monday. The individual has a prefer-
ence for early resolution of uncertainty if he prefers µ over ν. Kreps-Porteus show that a
preference for early resolution of uncertainty implies (and is implied by) the convexity of
W .
Note the key steps in the modeling exercise: Kreps-Porteus start with a nov el psy-
c hological phenomenon and identify the economically relevant consequences of that phe-
nomenon. Once the economically meaningful consequences are iden tied, the psychological
causes become irrelevan t. For the patient above, the source of the preference for early res-
olution of uncertainty is anxiety. But there could be many other reasons for a preference
for early resolution of uncertainty. Suppose, for exa m ple, the agent owns a lottery ticket
that will either yield a large reward (with small probability) or nothing. Prior to the
lottery dra wing, the agent must decide which car to purchase. The outcome of the lot-
tery will t ypically a ect the optimal car buying decision and, therefore, the agent would
be better o if the lottery drawing was held earlier. Hence, the induced preferen ces over
lotteries imply a preference for early resolution of uncertainty. In t his case, the agent has
15
perfectly standard preferences. The preference for early resolution of uncertainty comes
about because the agent has a second pa yo-relevant decision to make after choosing a
lottery.
In the two examples, the causes of the decision-maker’s preference for early resolution
of uncertainty are dierent. In the rst example the patient is trying to avoid anxiety
while in the second decision problem he is trying to make a better informed decision.
For a standard economist this distinction is irrelevant because standard economics does
not study the causes of preferences. For standard theory, the only relevant distinctions
between the two examples are the ones that can be identied through the decision-makers’
preferences.
8
The Kreps-Porteus theorem identies a formu la that resembles standard expected
utility applied separately at each decision date. While the formula is suggestive of a mental
process, this suggestiveness is an expositional device not meant to be taken literally.
9
The
formula encapsulates the behavioral assumptions of the theory in a user-friendly w ay and
thereby facilitates applications of the theory to (more complicated) economic problems.
The theory is successful if preference for early resolution of uncertain ty turns out
to be an empirically important phenomenon; that is, if models that incorporate it are
successful at addressing economic behavior. The role of the axioms is to summarize the
empirical c ontent of the theor y independently of the specic application. The generality of
the represen tation theorem, the usefulness of the key parameters, the ease with which the
parameters can be measured and, most importan tly, the empirical success of the model at
dealing with economic evidence determine theextenttowhichthetheorysucceeds.
Kreps-Porteus’s model has been generalized and applied to Macroeconomics and Fi-
nance (see Epstein and Zin (1991a, 1991b)). These elds analyze dynamic consumption
choice under uncertainty. The primitives of Kreps-Porteus’s model (dated lotteries) are
8
For example, the Kreps-P orteus independence axiom may not be appropriate in the case where the
agent has a second decision to make whereas the anxious patient might very well satisfy it.
9
A teacher in an intermediate micro class migh t sa y something like, “the consumer equates the marginal
utility of consuming the good to the marginal utility of the last dollar spent on the good,” while explaining
a rst order condition in a partial equilibrium model with separable preferences. This statement is meant to
pro v ide some intuition for the rst order condition, not as a description of the consumer’s mental process:
the marginal utilities in question depend on the particular utility function used to represent the preference
and hence are, to some extent, arbitrary. There is no presumption that either these particular marginal
utilities or the underlying calculus arguments are the actual currency of the consumer’s reasoning.
16
easily adapted to match closely the objects studied in Macroeconomics and Finance. The
fact that Kreps-P orteus strip all economically irrelevant details from their model is essen tial
for the success of this adaptation.
4.2 Neuroeconomics: Reference Dependent Utility
In a well-known experiment (Thaler 1980)), a random subset of the subjects are
assigned one unit of some object and then all subjects’ reservation prices for this object
are elicited. The price at which subjects who were assigned a unit are willing to sell it
typically exceeds the price at which the remaining subjects are willing to buy a unit. This
phenomenon is referred to as the endowment eect and has m otivated models that add a
reference point to the utility function.
oszegi and Rabin (2005) (henceforth oszegi-Rabin) propose a novel reference-
dependent preference theory. To understand the oszegi-Rabin theory, consider a nite
setofchoiceobjectsX.
10
A reference-dependent utility function U, associates a utility
with each reference point z X and each choice object x X.Hence,U : X × X IR,
where U(x, z) is the utilit y of x give n the reference z. This formulation of utility is not
new;thenoveltyisintheadoptionofK¨oszegi (2004)’s notion of a personal equilibrium to
determine the reference point. In this setting, a personal equilibrium for an decision-maker
facing the choice set A is any x A such that
U(x, x) U(y, x)(2)
for all y A.Hence,K¨oszegi-Rabin dene the reference point as the x that ultimately
gets chosen. It follows that an alternative x A is optimal (i.e., a possible choice) for
aK¨oszegi-Rabin decision-maker if (and only if) condition (2) abov e is satised. oszegi-
Rabin assume that U has the form
U(x, y)=
X
kK
u
k
(x)+
X
kK
µ(u
k
(x) u
k
(y)) (3)
where µ is an increasing function with µ(0) = 0 and K is some nite set indexing the
relevant hedonic dimensions of consumption. oszegi-Rabin note that these consumption
dimensions “should be specied based on psychological principles.”
10
An element x X may be uncertain (i.e., may be a lottery).
17
oszegi-Rabin also require that
U(x, y) U(y, y)impliesU(x, x) >U(y, x)(4)
for all x, y X.
There are certain striking dierences between the approaches of Kreps-Porteus and
oszegi-Rabin. In Kreps-Porteus, the formula is an “as if statement and the assumed
restrictions on choice behavior (axioms) are the content of the theory. In contrast, oszegi-
Rabin interpret the procedure associated with computing a personal equilibrium (i.e.,
nding x that satisfy equation (2)) as a description of the underlying psycho lo gical process.
oszegi-Rabin focus on psychologica l evidence supporting this procedure and th e various
assumptions on the function U.
To facilitate the comparison of the dierence in the t wo approac hes, we provide a
revealed preference analysis o f the oszegi-Rabin model for the case of no uncertainty.
11
Let X be nite and let Y be the set of all nonempty subsets of X. A function c : Y Y is a
choice function if c(A) A for all A Y . In revealed preference terms, the oszegi-Rabin
model is an investigation of a special class of choice functions. Given any state dependent
utility function U,dene C(·,U)asfollows:
C(A, U)={x A | U(x, x) U(y,x)y A}
A choice function c is ageneralK¨oszegi-Rabin choice function if there exists a reference
dependent utility function U suc h that c = C(·,U). If the U also satises (3) and (4)
then c is a aspecialK¨oszegi-Rabin choice function. For any binary relation º,dene the
function C
º
as follows:
C
º
(A)={x A | x º zz A}
It is easy to construct examples where C
º
(A)= unless certain assumptions are made on
º. Wesaythatthechoicefunctionc is induced by the binary relation º,ifc(A)=C
º
(A)
for all A Y .Itiswell-knownthatC
º
is a choice function whenever º is complete (x º y
11
oszegi-Rabin emphasize applications to decision making under uncertain ty. Since we limit our
analysis to a setting without uncertainty, our revealed preference “version” only captures the oszegi-
Rabin model for a limited set o f applications.
18
or y º x for all x, y X)andtransitive(x º y and y º z implies x º z for all x, y, z X).
Ho wever, transitivit y is not necessary for C
º
to be a choice function. The proposition
characterizes K¨oszegi-Rabin choice functions:
Proposition: Thefollowingthreeconditionsareequivalent:
(i) c is a general oszegi-Rabin choice function
(ii) c is a choice function induced by some complete binary relation
(iii) c is a special oszegi-Rabin choice function
Proof: See Appendix
Note that c = C
º
is a choice function implies º is complete. Hence, we may omit the
word complete in the above proposition. The equivalence of (i) and (ii) establishes that
abandoning transitivity is the only revealed preference implication of the oszegi-Rabin
theory. The equivalence of (ii) and (iii) implies that the particular functional form (3) and
condition (4) are without loss of generalit y.
The revealed preference analysis answers the following question: suppose the modeler
could not determine the individual ingredients that go into the representation, how can
he check whether or not the decision-maker behaves in a manner consistent with such a
representation? Or to put it dieren tly, how is the behavior of a oszegi-Rabin-decision
maker dieren t from a standard decision-maker? For the case of deterministic choice, the
answer is that the oszegi-Rabin decision-mak er may fail transitivit y.
In con trast, oszegi-Rabin treat the relevant dimension of hedonic utility and the
values of the various options along these dimensions as observable and quantiab le. They
emphasize that this quantication requires craft and an understanding of psychological
principles.
“Several aspects of our theory, however, render it short of fully general and formu-
laically applicable. Many of our specic assumptions are based on intuition rather
than direct evidence.” (p. 31).
The assumptions of many theoretical models are based on intuition rather than direct
evidence. But in standard models, any future test of the assumptions and the underlying
19
intuitions requires direct (revealed-preference) evidence. Where oszegi-Rabin dier from
standard economics is that psychological principles and (non-cho ice) evidence is viewed as
an alternative form of evidence and it is this type of evidence that is the focus of their
attention.
12
In oszegi-Rabin, utility indices (u
k
’s) and attachment disutilities (measured by µ)are
hedonic utilities and are distinct from choice utilities. The K ¨oszegi-Rabin representation is
not only a theory of choice but also a description of the underlying psychological process:
“By all intuition and evidence, the feeling of loss when giving up a mug is a real
hedonic experience, and making choices reecting that real hedonic experience is partly
rational. But as interpreted by Kahneman (2001) and Loewenstein, O’Donoghue, and
Rabin (2003), people seem to over-attend to this experience because they ignore that
the sensation of loss will pass very quickly behaving as if they would spend much
time longing for the mug they once had.”
Hence, measured feelings are inputs in the oszegi-Rabin analysis. The authors believe
that these m easuremen ts will enable the analyst to identify hedonic utilities that capture
the intrinsic satisfaction of consuming the good (i.e., the u
k
’s) and hedonic utilities that
capture the real loss associated with giving up the good. Moreov er, they expect hedonic
measurements to distinguish behavior that results from rational assessment of utilities from
behavior that results from over-attending to utilities.
oszegi-Rabin plan to calibrate the model using psychological insights and evidence.
They view the Kreps-P orteus-type insistence on calibrating through revealed preferences as
an un necessary demand for “formulaic applicability.” The model’s success is judged by the
extent to wh ich t he psycho logical process suggested by their formula matches psychological
evidence.
12
“In oszegi and Rabin (2004), the previous version of this paper, we argue at length (as we do
briey in the conclusion of this paper) that the consumption dimensions used in our framework should be
specied based on psych ological principles, and not necessarily correspond directly to quantities of dierent
products.”
20
5. The Failure of Rationalit y
Neuroeconomists share with man y other critics of economics the view that individual
rationality is an empirically invalid assumption. Over the y ears, critics of rationality ha ve
identied various economic assumptions as ‘rationality.’ The independence axiom, prob-
abilistic sophistication, monotonicity of payos in the agent’s own consumption, or the
independence of payos from the consumption of others hav e all been viewed as implica-
tions of rationality before the emergence of economic models that relax these assumptions.
More recent criticisms of rationality focus on the fact that individuals make systematic
mistakes even in situations where the right choice is clear. The most ambitious critics
of rationality argue that the idea of utility maximization is awed because individuals
do not maximize an y preference relation. In section 5.2 we argue that these criticisms
typically underestimate the exibilit y revealed preference methodology. In particular, we
illustrate how standard economics deals with ‘mistakes.’ In section 5.1, we focus on the
evidence reported by neuroeconomists in support of their criticism. We observe that much
of this evidence misses its target because economic models make no predictions about
physiological processes that underly decision making.
5.1 The Neuroeconomic Case Against Preference Maximization:
CLP (2004) oer a short-list of neuroeconomic evidence against the “standard eco-
nomic concept of preference.” The list begins with the following item:
“Feelings of pleasure and pain originate in homeostatic mechanisms that detect depar-
tures from a “set-point” or ideal level, and attempt to restore equilibrium. In some
cases, these attempts do not require additional voluntary actions, e.g., when monitors
for body temperature trigger sweating to cool you o and shivering to warm you up. In
other cases, the homeostatic processes operate by changing momentary preferences, a
process called “alliesthesia” (Cabanac, 1979). When the core body temperature falls be-
low the 98.6F set-point, almost anything that raises body temperature (such as placing
one’s hand in warm water) feels good, and the opposite is true when body temperature
is too high. Similarly, monitors for blood sugar levels, intestinal distention and many
other variables trigger hunger. Homeostasis means preferences are “state-dependent”
21
in a special way: The states are internal to the body and both aect preferences and
act as information signals which provoke equilibration....” (CLP (2004), p. 562)
No observation in the above cited paragraph contradicts any principle of preference maxi-
mization. Economic models make no predictions or assumptions about body temperature,
blood sugar levels, or other physiological data and therefore such data cannot refute eco-
nomic models. Sta ndard economics is not committed to a particular theory of what makes
peoplefeelgood. Nordoesitassumethatfeelinggoodiswhatpeoplecareabout.
The second item challenges the adequacy of rev ealed preference data:
“Inferring preferences from a choice does not tell us everything we need to know, and
may tell us very little. Consider the hypothetical case of two people, Al and Naucia,
who both refuse to buy peanuts at a reasonable price (cf. Romer, 2000). The refusal to
buy reveals a common disutility for peanuts. But Al turned down the peanuts because
he is allergic: consuming peanuts causes a prickly rash, shortens his breath, and could
even be fatal. Naucia turned down the peanuts because she ate a huge bag of peanuts at
a circus years ago, and subsequently got sick from eating too much candy at the same
time. Since then, her gustatory system associates peanuts with illness and she refuses
them at reasonable prices. While Al and Naucia both revealed an identical disutility,
a neurally-detailed account tells us more. Al has an inelastic demand for peanuts-you
can’t pay him enough to eat them!-while Naucia would try a stful for the right price.
..... (CLP (2004), p. 563)
It is often impossible to infer preferences from a single decision. In fact, nding a small
class of such experiments to identify the individual’s utility function is the central concern
of reve aled preference theory. Hence, not buying pean uts at a single price does not imply
“...Al and Naucia both revealed an identical disutility” and while “a neurally-detailed ac-
count” could “tell us more,” the economically meaningful information can only be elicited
with a change in prices. In standard economics, the reasons for a particular ranking of
alternatives is irrelevant. That Al might die from consuming peanuts and Naucia simply
doesn’t like consuming them matters only if at some price Naucia is willing to do so and Al
is not; and even then, it is the latter fact and not the underlying reasons that are relevan t.
We delay the discussion of the third item to the next section where we discuss w elfare
analysis. The fourth item discusses what standard economics would consider a form of
22
money illusion: decision-mak ers may deriv e “direct” utility from money, beyond the utility
they derive from the g oods purchased with money.
“A fourth problem with preference is that people are assumed to value money for what
it can purchase that is, the utility of income is indirect, and should be derived from
direct utilities for goods that will be purchased with money. But roughly speaking, it
appears that similar brain circuitry dopaminergic neurons in the midbrain is active
for a wide variety of rewarding experiences drugs, food, attractive faces (cite), humor
(cite) and money rewards. This means money may be directly rewarding, and it’s
loss painful....” (CLP (2004), p. 565.)
There are straightforward economic tests for identifying money illusion. Such a test would
entail changing prices and nominal wages in a manner that leaves the set of feasible con-
sumption, labor supply pairs unchanged. Then, we could check if this change has shifted
the labor supply curv e. But the issue cannot be addressed by investigating the brain cir-
cuitry and the midbrain, since economic modelsaresilentonthebrainactivityassociated
with decision making.
The nal item deals with addiction:
“Addiction is an important topic for economics because it seems to resist rational
explanation. .... It is relevant to rational models of addiction that every substance to
which humans may become biologically addicted is also potentially addictive for rats.
Addictive substances appear therefore to be “hijacking” primitive reward circuitry in
the “old” part of the human brain. Although this fact does not disprove the rational
model (since the recently-evolved cortex may override rat-brain circuitry), it does show
that rational intertemporal planning is not necessary to create the addictive phenomena
of tolerance, craving, and withdrawal. It also highlights the need for economic models
of the primitive reward circuitry, which would apply equally to man and rat. .....”
(CLP (2004) p. 565-566).
That substances addictive for rats are also addictive in humans is not relevan t for economics
because (standard) economics does not study rats.
13
It also does not study the causes of
13
Presumably, psychologists interested in hu man physiology nd it worthwhile to study rats because
of the similarities in the neurological make-up of the two species. Apparently, the similarities between the
economic institutio ns of the t wo species are not sucient to generate interests in rats among economists.
23
preferences. To say that a decision-maker prefers x to y is to say that he never chooses
y when x is also available, nothing more. Hence, addiction can be identied as a distinct
economic phenomenon only through its distinct choice implications not through the under-
lying brain processes. The fact that addictive substances appear to be “hijacking primitive
reward circuitry, fails to disprove the rational model not because the cortex may override
rat-brain circuitry but because the rational model addresses neither the brain-circuitry nor
the cortex.
What the authors describe as evidence is in fact a statement of a their philosophical
position. They have decided that the cortex represen t s planned action (rational choice),
while certain processes in other parts (presumably in the midbrain) represent overwhelming
physiological inuences (i.e., the hijac king of the primitive reward circuitry).
“Many of the processes that occur in these systems are aective rather than cognitive;
they are directly concerned with motivation. This might not matter for economics were
it not for the principles that guide the aective system the way that it operates is
so much at variance with the standard economics account of behavior.” (CLP (2005)
p. 25-26).
Hence, every decision that is associated with the latter types of processes is interpreted
as evidence that rational choice theory is wrong. This critique fails because standard
economics tak es no position on whether a particular decision represents a manifestation
of free will or a succum bing to biological necessity. Rationality in economics is not tied to
physiological causes of beha vior and therefore the physiological mechanisms cannot shed
lightonwhetherachoiceisrationalornotin the sense economists use the term. Brain
mechanisms by themselves cannot oer evidence against transitivity of preferences or any
other choice-theoretic assumption. Therefore, evidence that utility maximization is not a
good model of the brain cannot refute economic models.
Discussing decision making under uncertainty, Camerer (2005) writes:
“For example, when economists think about gambling they assume that people combine
the chance of winning (probability) with an expectation of how they will value winning
and losing (“utilities”). If this theory is correct, neuroeconomics will nd two processes
in the brain one for guessing how likely one is to win and lose, and another for
24
evaluating the hedonic pleasure and pain of winning and losing-and another brain
region which combines probability and hedonic sensations. More likely, neuroeconomics
will show that the desire or aversion to gamble is more complicated than that simple
model.”
Camerer assumes that there is one set of correct abstractions for both economics and
neuroscience and tries to identify whether the ones currently used in economics belong to
that set. The conceptual separation between probabilities and utilities is very important for
expected utility theory. This separation need not have a physiological counterpart. Even
if it did, mapping that process into the physiology of the brain and seeing if it amoun ts to
“one [process] for guessing how likely one is to win and lose, and another for evaluating the
hedonic pleasure and pain of winning and losing-and another brain region which combines
probability and hedonic sensations” is a problem for neuroscience, not economics. Since
expected utility theory makes predictions only about choice behavior, its validity can be
assessed only through choice evidence. If economic evidence leads us to the conclusion that
expected utility theory is appropriate in a particular set of applications, then the inability
to matc h this theory to the physiology of the brain might be considered puzzling. But this
puzzle is a concern for neuroscientists, not economists.
Standard economics does not address mental processes and, as a result, economic
abstractions are typically not appropriate for describing them. In his (1998) survey, Rabin
criticizes standard economics for failing to be a good model of the mind, even though
standard economics never had such ambitions:
“Economists have traditionally assumed that, when faced with uncertainty, people cor-
rectly form their subjective probabilistic assessments according to the laws of probabil-
ity. But researchers have documented m any systematic departures from rationality in
judgment under uncertainty.”
Many economists (including the authors of many introductory economic textbooks) are
awarethatmostpeopledonotthinkintermsofprobabilities,subjectiveorotherwise.
Nor does standard economics assume that consumers know Bayes’ law in the sense that a
graduate student in economics would be expected to know it. Economic models connect to
reality through economic variables, prices, quan tities etc. and not through their modeling
25
of the individual’s decision-making process. Evidence of the sort cited in neuroeconomics
may inspire economists to write dierent models but it cannot reject economic models.
Our central argument is sim ple: neuroscienceevidencecannotrefuteeconomicmodels
because the latter mak e no assumptions or draw no conclusions about physiology of the
brain. Conversely, brain science c annot revolutionize economics because it has no vehicle
for addressing the concerns of the latter. Economics and psychology dier in the question
they ask. Therefore, abstractions that are useful for one discipline will typically be not
very useful for the other. The concepts of a preference, a choice function, dema nd function,
GDP,utility,etc. haveproventobeusefulabstractionineconomics. Thefactthatthey
are less useful for the analysis of the brain does not mean that they are bad abstractions
in economics.
5.2 Mistakes
Individuals sometimes make obviously bad decisions. Neuroeconomists use this fact
as proof of the failure revealed preference theory. Bernheim and Rangel (2005) provide the
following example:
“(...) American visitors to the UK suer numerous injuries and fatalities because they
often look only to the left before stepping into streets, even though they know trac
approaches from the right. One cannot reasonably attribute this to the pleasure of
looking left or to masochistic preferences. The pedestrian’s objectives - to cross the
street safely - are clear, and the decision is plainly a mistake.”
Standard economics has long recognized that there are situations where an outsider could
improve an individual’s decisions. Such situations come up routinely when agents are
asymmetrically informed. Hence, standard economics deals with ‘mistak es’ by employing
the tool of information economics.
Consider the following thought experiment. A prize ($100) is placed either in a red
or in a blue box and the agen t knows that there is a 60% c hance that the money is in the
redbox.Confrontedwithachoicebetweenthetwoboxes,theagentchoosestheredbox.
An observer who has seen that the m oney w as placed in the blue box may think that the
agent prefers choosing red to getting $100. This inference is obviously incorrect because
“choose $100” is a strategy that is not available to the agent. The observer who thinks
26
the agent prefers red to $100 has not understood the agent’s constraints. Given agent’s
constraints, his choice of the red box is optimal.
Many situations in which agents systematically make mistakes can be interpreted as
situations where agents face subjective constraints on the feasible strategies that are not
apparent from the description of the decision problem. The strategy “only cross the street
when no car is approaching” may be unavailable in the sense that it violates a subjective
constraint on the set of feasible strategies. Hence, a standard economic model of the
street-crossing problem would add a constraint on the set of feasible strategies as part of
the description of the agent.
Suppose the economist asserts that the American tourist prefers not being run over
by a car but nds it more dicult to implement that outcome in the UK than in the US.
As evidence for this assertion the economist could point to data showing that American
tourists in London avoid unregulated intersections. That tourists incur a cost to cross at
regulated intersections suggests (i) they are unable to safely cross the street withou t help
and (ii) they are not suicidal.
Framing eects can be addressed in a similar fashion. Experimenters can often ma-
nipulate the choices of individuals by restating the decision problem in a dierent (but
equivalen t) form. Standard theory interprets a framing eectasachangeinthesubjective
constraints (or information) faced by the decision mak er. It may turn out that a sign that
alerts the American tourist to ‘look right’ alters the decision even though such a sign does
not change the set of alternatives. The standard model can incorporate this eect by as-
suming that the sign changes the set of feasible strategies for the tourist and thereby alters
thedecision. Withthehelpofthesign,thetouristmaybeabletoimplementthestrategy
“always look right then go” while without the sign this strategy may not be feasible for the
tourist.
For standard economics, the fact that individuals make mistak es is relevant only if
these mistakes can be identied through economic data. That behavior wou ld have been
dierent under a counter-factual scenario in which the agen t did not make or was preven ted
from making these mistakes, is irrelevant.
27
6. The Inadequacy of Rationality
Neuroeconomists criticize both standard positiv e economics an d standard normativ e
analysis. In the previous section, we described and responded to the neuroeconomic cri-
tique of positive economics. Here, we address the neuroeconomic critique of normative
economics.
Kahneman (1994) notes that “[t]he term ‘utility’ can be anchored in the hedonic expe-
rience of outcomes, or in the preference or desire for that outcome.” Because agents make
mistakes, neuroeconomists conclude that a person’s choices do not maximize the hedonic
consequences of these c hoices. More generally, neuroeconomists argue that choices do not
maximizing the individual’s well-being or happiness.
The neuroeconomic critique of standard welfare analysis relies on two related argu-
ments: rst, what people choose often fails to make them happy. Second, proper welfare
analysis should be based on what makes people happy and suc h measurements necessitate
neuroscientic input. Even if direct measurement of happiness through brain scans is not
yet feasible, neuroeconomists believe that such measurement will eventually be possible.
“A third problem with preferences is that there are dierent types of utilities which
do not always coincide.(...) For example, Berridge and Robinson (1998) have found
distinct brain regions for “wanting” and “liking,” which correspond roughly to choice
utility and experienced utility. The fact that these areas are dissociated allows a wedge
between those two kinds of utility... If the dierent types of utility are produced by
dierent regions, they will not always match up. Examples are easy to nd. Infants
reveal a choice utility by putting dirt in their mouths, but they don’t rationally antici-
pate liking it. Addicts often report drug craving (wanting) which leads to consumption
(choosing) that they say is not particularly pleasurable (experiencing). Compulsive
shoppers buy goods (revealing choice utility) which they never use (no experienced
utility)(...)” CLP (2004, p. 564).
Neuroeconomists use such evidence and related (thought) experiments to suggest that the
concept of a preference that simultaneously determines behavior and “what is good for the
agent”canbewideo the mark. Hence, neuroeconomists distinguish between “decision
28
utilities”, which generate beha vior, and “experienced utilities” which indicate what makes
the agen t happy.
In section 6.2, we discuss and respond to this neuroeconomic critique of standard
welfare analysis. In sections 6.3 and 6.4, we consider two examples of substantive ratio-
nality in the literature: recent proposals for paternalism (section 6.3) and welfare analysis
in multi-self models (section 6.4). First, we provide a brief summary of standard welfare
analysis.
6.1 Standard Welfare Analysis
Economists use welfare analysis to examine how institutions mediate the interests of
the participating individuals. Welfareimprovingchangestoaneconomicinstitutionare
dened to be changes to which the individual(s) would agree. The policy x is deemed better
than the policy y for an individual if and only if, given the opportunity, the individual
would choose x over y.Thechoiceofx over y may be motivated by the pursuit of happiness,
a sense of duty or religious obligation, or reect an impulse. In all cases, it constitutes an
improvement of economic welfare.
Economic welfare analysis is a tool for analyzing economic institutions and models.
For example, economic analysis of a trading institution may establish that the institution
yields Pareto ecient outcomes and, therefore, there is no institutional change that will
improve the economic welfare of all participan ts. Economists view suc h results as successes
of their theories because the results dem onstrate that the economic model of the institution
is “stable”; t here are no chan ges that are mutually agreeable to all participants. Conversely,
models of economic institutions will raise suspicion if there are obvious welfare improving
changes (ch anges that all individuals would agree to) because the availabilit y of such
changes suggests that the model misses important aspects of the underlying reality.
Economists use the revealed preference of individuals as a welfare criterion because it
is the only criterion that can be integrated with positive economic analysis. For example,
consider the economic analysis of farm subsidies. Economists have found that US farm
subsidies are inecient, i.e., farm subsidies could be eliminated and farmers could be
compensated in a w ay that would increase the economic welfare of all US households. The
most interesting aspect of this observation isthatfarmssubsidiespersistdespitetheir
29
ineciency. Motivated by this and related observations, economists have examined the
mechanisms (political and economic) that lead to the persistence of inecient policies.
The example of farm subsidies is typical for the use of welfare analysis in economics.
Normative statements (farm subsidies are inecient) are used to dene new positiv e ques-
tions (what makes farm subsidies persist?) that lead to better models of the underlying
institution. Economists use welfare analysis to iden tify the interests of economic agents
and to ask whether existing policies can be interpreted as an expression of t hose in terests or
whether the understanding of the institutional constraints on policies remains incomplete.
This use of welfare analysis requires the standard denition of economic welfare. There
is no reason for economic agents to gravitate towards policies and institutions that yield
higher welfare if the underlying notion of welfare does not reecttheinterestsofagentsas
theagentsthemselvesperceivetheseinterests.
6.2 Neuroeconomic Welfare Analysis
Neuroeconomists treat the economists denition of welfare as if it were a theory of
happiness and proceed to nd evidence against this theory. CLP write,
“Economics proceeds on the assumption that satisfying people’s wants is a good thing.
This assumption depends on knowing that people will like what they want. If likes and
wants diverge, this would pose a fundamental challenge to standard welfare economics.
Presumably welfare should be based on ‘liking.’ But if we cannot infer what people like
from what they want and choose, then an alternative method for measuring liking is
needed, while avoiding an oppressive paternalism.” (p. 36)
Welfare in economics is a denition and not a theory (of happiness). Therefore, the di-
vergence of “liking and wanting” does not pose an y challenge to the standard denition
of w elfare, no matter how the former is dened. Standard economics oers no substan-
tive criterion for rationalit y because it has no therapeutic am bition; it does not attempt
to cure decision-makers who make choices that do not generate the most pleasure. The
more modest economic denition of welfare is mandated by the role of w elfare analysis in
economics.
To compare this role with the role envisaged by neuroeconomists, suppose that a
trading institution is found to be (economically) inecient. Ty pically, this will imply that
30
someone can set up an alternative institution and make a p ro t. Hence, we can expect this
change to take place without a benevolent dictator, simply as a result of self-interested
entrepreneurship. Suppose a psychologist argues that an inecient trading institution
leads to higher ‘experienced’ utility than an ecien t one and agen t s are mistaken in their
preference for the economically ecient institution. Whether or not this assertion is true,
the economic analysis of the trading institution is valid. The economically ecient trading
institution is still the one we can expect to prevail. Moreov e r, since agents perceive their
own interests to coincide with the economic welfare criterion there is no obvious mechanism
(economic or political) by whic h the psychologically superior institution could emerge.
Neuroeconomistswouldarguethateventhoughawelfarecriterionbasedonthein-
dividuals own “preferences or desires” may be relevant for positiv e analysis, a substantive
criterion is needed for normative theory. For neuroeconomists, the goal of welfare analysis
is to advocate changes that improve decision-maker’s well-being. To achieve their goal,
neuroeconomists can either try to convince people to want what is good for them (ther-
apy) or m ake the right choice on their behalf (paternalism). Kahneman (1994) summarizes
both these positions as follows:
“However, truly informed consent is only possible if patients have a reasonable concep-
tion of expected long-term developments in their hedonic responses,... A more contro-
versial issues arises if we admit that an outsider can sometimes predict an individual’s
future utility far better than the individual can. Does this superior knowledge carry a
warrant, or even a duty, for paternalistic intervention? It appears right for Ulysses’
sailors to tie him to the mast against his will, if they believe that he is deluded about
his ability to resist the fatal call of the sirens.”
The neuroeconomic view of welfare analysis builds on an inappropriate analogy between an
economistandatherapist. Itmaybethecasethatsometimesoutsidersknowmoreabout
the future utility of an individual than the individual himself. But the goal of economics
is not to prepare the economist for service at times when he nds himself in the role of
that outsider.
If economists were in the business of inv estmentcounselling,itmightmakesensefor
neuroeconomists to focus on the conict between what the typical consumer/investor wan ts
31
to do now and what will make him happ y in the future. But economists do not deal with
patients (or even clients). Therefore it is not clear who the recipient of their counselling
would be. The neuroeconomic view of the economist as a therapist is inapprop riate both
as a description of what economists do, and as a description of what they could be doing.
Of course, one could argue that economists should identify a substantive criterion
for rationality (i.e., a criterion for measuring what really makes individuals happy) and
advocate changes that increase welfare according to this criterion regardless of whether
or not they have the means to convince the potential beneciaries to follow this advice.
The hope being that someone other than the potential beneciary might be convinced
to implemen t the policies. This view is apparent in Kahneman’s search for a benev o lent
paternalistic gure in his examples:
...the physician could probably ensure that the patient will retain a more favourable
memory of the procedure by adding to it a medically superuous period of diminishing
pain. Of course, the patient would probably reject the physician’s oer to provide an
improved memory at the cost of more actual pain. Should the physician go ahead
anyway, on behalf of the patient’s future remembering self?” (Kahneman (1994))
Inthesamearticle,Kahneman suggests that there is
“a case in favour of some paternalistic interventions, when it is plausible that the state
knows more about an individual’s future tastes than the individual knows presently.”
When economists or political scien tists model the government, they do so either by endow-
ing the govern ment with certain objectives or by modeling government as an institution
where conicting incen tives of various agents interact. In Kah n em an’s analysis, the gov-
ernment is a benign and disinterested agent whose only role is to serve as the object of the
modeler’s lobb ying eorts.
Welfare analysis for neuroeconomics is a form of social activism; it is a recommendat ion
for someone to change his preferences or for someone in a position of authority to intervene
on behalf of someone else. In contrast, welfare economics in the standard economic model
is integrated with the model’s positive analysis; it takes agents’ preferences as given and
evaluates the performance of economic institutions.
Regardless of one’s views on the importance and ecacy of social activism, there are
advantages to separating the role of the economist as a researcher from the role a particular
32
economist might play as an advocate. This separation enables the positive analysis to
proceed without having to resolve dicult philosophical problems such as guring out what
makespeoplehappyorwhoismoredeservingofhappiness. Italsoenablesotherresearchers
to assess and critique a particular piece of analysis without having to evaluate the merits
of the underlying moral philosophy or the eectiveness of the researcher’s activism.
6.3 Proposals for Paternalistic Welfare Criteria
Two recent articles outline plans for welfare economics based on paternalistic princi-
ples. In both papers, the authors are motivated b y evidence showing that the specication
of the default option aects individual choices of retirement plans. Rates of enrollmen t in
401(k) plans are signicantly higher when the default option is to enroll than when the
default option is not to enroll.
A standard interpretation of the 401(k) problem would argue that the default matters
for the decision problem as perceived by the individual. The employee’s set of feasible
strategies changes with the default just as the feasible strategies of the American tourist
in London change when a sign is placed at the side of the road alerting the tourist to look
right. The welfare maximizing default option is the one that agents w ould choose when
asked to choose among defaults.
Thaler and Sunstein (2003) (henceforth TS) seek paternalistic principles for choosing
a default option. TS advocate libertarian paternalism and suggest the follo wing three
guiding principles:
“First, the libertarian paternalist might select the approach that majority would choose
if explicit choices were required and revealed.”
Hence, the libertarian paternalist is to substitute the predicted preferences of the majority
for the preferences of the individual.
“Second, the libertarian paternalist might select the approach that would force people
to make their choices explicit.” Finally, “the libertarian paternalist might select the
approach that minimizes the number of opt-outs.”
TS oer no argumen ts for why their principles are likely to lead to greater happiness.
In fact, they oer no defense of these principles. They simply say that the libertarian
paternalist might choose to use them.
33
ThefactthattheTSprinciplesarenotparticularly compelling as moral philosoph y
is a side issue. The real issue is that it is dicult to see what question their proposal
addresses. To put it dierently, it is unclear who they have in mind as the potential
beneciary of their ph ilosoph ical argument. The TS motivation for patern alism seems to
be that it is inevitable:
“The rst misconception is that there are viable alternatives to paternalism. In many
situations, some organization or agent must make a choice that will aect the choices
of some other people.”
Clearly, the decisions of one agent may aect the utility of others. Economic analysis
suggests that the interests of the agent in control are a good place to start when analyzing
such situations. For example, in order to maximize prots, rms may wish to make their
benet plans as attractive as possible to their future employees. In that case, rms will
c hoose plans (and their default options) in accordance with how the emplo yees w ould
choose them. It may be impractical to ask prospective employees about their preferred
default option on the retirement plan and therefore the rm will use its best subjective
assessment of the employees preferences.
Of course, the employer ma y ha ve dieren t objectives and may choose a plan that
diersfromhisbestguessoftheemployeespreferred plan. Presumably, he would do
so to increase his own welfare. In this situation, as in the situation of the pure prot
maximizing employer, there is no role for the TS principles. The TS argumen t amounts to
telling employers that when they face incomplete informatio n they should adopt a di erent
objectiv e. Standard economics would predict that employers will take the best action given
their own objectives and given what they know about the preferences of the employees.
In a recent paper, Camerer, Issacharo, Loewenstein, O’Donoghue and Rabin (2003,
henceforth CILOR) introduce and advocate the notion of “asymmetric paternalism:”
“A regulation is asymmetrically paternalistic if it creates large benets for those who
make errors, while imposing little or no harm on those who are fully rational.”
CILOR do not explain which preferences reect bounded rationality and which reect full
rationality, when benets are large and when there is little or no harm. Nevertheless,
their implicit welfare criterion is familiar. As wedescribedinsection5.2,themistakesof
34
boundedly rational agents can be modeled as a subjectiv e informational constraint facing
these agents. With this re-interpretation, the CILOR principle amounts to an (epsilon)
version of the Pareto principle: help the uninformed without h u rting the informed (too
much). However, there is an important dierence between the CILOR version of the Pareto
principle and the Pareto principle in standa rd economics: CILOR view their principle as
a framework for activism. They urge their readers to adopt their modied libertarian
philosophy in place of the purely libertarian philosophy that they perceive as guidin g
many economists (and perhaps some lawyers) or the unabashed paternalism favored by
behavioral economists.
“Our paper seeks to engage two dierent audiences with two dierentsetsofconcerns:
For those (particularly economists) prone to rigid antipaternalism, the paper describes
a possibly attractive rationale for paternalism as well as a careful, cautious, and dis-
ciplined approach. For those prone to give unabashed support for paternalistic policies
based on behavioral economics, this paper argues that more discipline is needed and
proposes a possible criterion (CILOR p. 1212).
Of course, it is legitimate for TS and CILOR to engage employers or the legal and economics
professions in a moral debate. But this has little to do with welfare economics which is not
concerned with moral philosophy or with providing a disciplined guide for social action.
Standard economists spend little time or eort advocating normative criteria even
when they feel that the right normative criterion is unam biguous. For example, many
economists and decision-theorists believe in the importance of making decisions under un-
certainty consistent with some subjective probability assessm ents. Moreover, hardly any-
one would question the normative appeal of using Bayes’ law when updating probabilities.
There are man y research papers where agents are endowed with subjectiv e probabilities
and use Bayes law. The purpose of these papers is not to advocate the use of subjective
probabilities or Bayesian revision; rather, the normative appeal of the Savage model serves
as a starting point for the positive analysis. The ultimate value of Sa vage’s contribution
depends n ot on the ability of his followers to convince individ ual economic agents or benign
planners to adopt his view of probability but on the s uccess his followers have at developing
models that address economic data.
35
6.4 Preference Reversals and Multiselves
There is evidence that individuals resolve the same intertemporal trade-o dierently
depending on when the decision is made.
14
Researchers, starting with the work of Strotz
(1955), have argued that this phenomenon requires modeling the individual as a collection
of distinct selves with conicting interests. Such models represent a major departure from
standard economics conception of the individual as the unit of agency. For example, if the
individual cannot be identied as a coherent set of interests, then the economists’ welfare
criterion is not well-dened. Hence, for neuroeconomists, preference reversals constitute
an empirical validation of the psychologist’s as opposed to the economist’s view of the
individual.
Consid er the following example: in period 1, the agent c hooses the consumption stream
(0, 0, 9) o ver (1, 0, 0) and chooses (1, 0, 0) over (0, 3, 0). Inperiod2theagentchooses(0, 3, 0)
over (0, 0, 9). Suppose the agen t faces the following decision problem: he can either choose
(1, 0, 0) in period 1 or leave the choice bet ween (0, 0, 9) and (0, 3, 0) for period 2. Confronted
with this choice, the agent pic ks (1, 0, 0).
In Gul and Pesen d orfer (2001), (2004) and (2005), we propose a standard, single-self
model that accounts for this behavior. To illustrate the approach, dene C to be the set of
second period choice problems fo r the individual; that is, an element C C consists of con-
sumption streams with identical rst period consumption levels: (c
1
,c
2
,c
3
), (c
0
1
,c
0
2
,c
0
3
)
C C implies c
1
= c
0
1
. In period 2, the individual chooses a consumption stream from
some C. In period 1, the individual chooses a choice problem C for period 2. Choosing
(1, 0, 0) in period 1 corresponds to {(1, 0, 0)} while the option of leaving it to period 2 to
choose between (0, 3, 0) and (0, 0, 9) is described as
C = {(0, 3, 0), (0, 0, 9)}
With this notation, we can summarize the (period 1) behavior as
{(0, 0, 9)}Â{(1, 0, 0)C = {(0, 3, 0), (0, 0, 9)} {(0, 3, 0)}
14
See Loewenstein, et al. for a recent survey of the experimental evidence. In the typical experiment,
subjects choose between a smaller, date 2 reward and a larger, date 3 reward. If the choice is made at
date 2, then the smaller-earlier reward is c hosen. If the choice is made earlier (i.e., at date 1) then the
larger-later reward is chosen. This phenomenon is sometimes referred to as dynamic inconsistency or a
preference reversal.
36
Note that choosing between {(0, 3, 0)} and {(0, 0, 9)} is not the same as choosing from the
set C = {(0, 3, 0), (0, 0, 9)}. In the former case, the consumer commits toaconsumption
path in period 1 while in the latter he chooses in period 2. The preference statement s
above indicate that the individual prefers a situation where he is committed to (0, 0, 1) to
asituationwherehechoosesfromC in period 2. When such a commitment is una vailable,
and the agent is confronted with C in period 2, he chooses (0, 3, 0).
Standard economic models identify choice with welfare. Therefore, the choice of
(0, 3, 0) from C in period 2 is welfare maximizing as is the choice of {(0, 0, 9)} over {(0, 3, 0)}
in period 1. The interpretation is that, in period 2, the agen t struggles with the temptation
to consume 3 units. Temptation is costly to resist and therefore co nsuming (rather than
holding out for 9 in period 3) is the optimal (and welfare maximizing) choice in period 2.
In period 1, higher period 2 consumption is not temp ting and therefore the agent prefers
{(0, 0, 9)} over {(0, 3, 0)}. Period 1 behavior reveals that the individual’s w elfare is higher
in all periods when he is committed to (0, 0, 9) than when he mu st choose from C in period
2.
15
The m ulti-self model abandons the revealed preference approach to welfare and con-
structs paternalistic welfare criteria. Consideragainthethreeperiodmodel. Ineachpe-
riod, the individual’s preference are described by a utility function, U
t
. For concreteness,
assume:
U
1
(c
1
,c
2
,c
3
)=c
1
+ βδc
2
+ βδ
2
c
3
U
2
(c
1
,c
2
,c
3
)=c
2
+ βδc
3
U
3
(c
1
,c
2
,c
3
)=δc
3
(9)
where δ = β =1/2. While dierent papers postulate dierent w elfare criteria for such
situations, the common argument is that preference reversals necessitate a criterion for
trading-o the utility of the various selv es. The most common practice in this literature
is to treat the U
0
below as the welfare criterion.
U
0
(c
1
,c
2
,c
3
)=c
1
+ δc
2
+ δ
2
c
3
15
Note that choosing between {(0, 0, 9)} and C is not a feasible option in period 2. Therefore, revealed
preference experiments cannot uncover whether or not in period 2, the individual has a preference (or
distaste) for commitment.
37
This particular welfare criterion may seem odd. After all, U
0
quite arbitrarily sets β =1
and assigns a higher welfare to (1, 0, 11) than to (2, 3, 0) even though selves 1 and 2 prefer
(2, 3, 0). The multiple-selves literature interprets U
0
as the preferences with the“present
bias” removed.
16
In other words, β<1 is diagnosed as a defect and the role of policy
intervention is to cure this defect.
Note that hyperbolic discounting (or time inconsistency) is not necessary for gener-
ating conict among the various selves of the individual: Consider again the three pe-
riod example above but now let β = 1. The resulting utilit y functions describe stan-
dard preferences with exponential discounting. Consider the two consumption streams:
(1, 0, 0) and (0, 0, 4) and note that U
1
(1, 0, 0) = U
1
(0, 0, 4) but U
2
(1, 0, 0) <U
2
(0, 0, 4) and
U
3
(1, 0, 0) <U
3
(0, 0, 4); that is, the allocation (1, 0, 0) is Pareto dominated by the allo-
cation (0, 0, 4) even though the usual w elfare criterion of the multiselves literature (U
0
)
would deem the two alternatives welfare equivalent.
17
Economists often note the arbitrariness of using U
0
as a welfare criterion in the mul-
tiselves model. It is not clear what hedonic utility calculations ha ve led neuroeconomists
to decide that U
0
represents the right trade-o among the hedonic utilities of the various
selves. Our point is dierent: standard economics has neither need nor use for a wel-
fare criterion that trades o utility among the various selves of a single individual. Suc h
trade-os can never play a role in explaining or understanding economic institutions. By
denition, only behavior can inuence economic data or institutions. Hence, beyond their
eect on behavior the various ‘selves’ are irrelevan t for the analysis. By contrast, neu-
roeconomists view the existence of multiple selves as both an opportunity and a rationale
for activism. They wish to urge the individual to do a better job at accommodating the
welfare of their future selves (i.e., resist β<1 and other biases). Failing that, they would
like to convince third parties to intervene on behalf of the agent’s future selves. This ther-
apeutic/paternalistic stance is sim ilar to the position of medical professionals who attempt
to cure a patient’s addiction. By proposing a welfare criterion, the modeler is either urging
16
See, for example, Rabin and O’Donoghue (2003).
17
In standard analysis, this issue does not arise because the same utility function (U
1
)isusedto
describe behavior (and welfare) at each decision date. In period 2, period 1 consumption cannot be altered
and therefore the additively separable form of the utility function allows us to drop the rst term as a
simplication without aecting optimal choices.
38
the individual to reform his behavior, or urging someone in a position of authority to force
theindividualtodoso.
Identifying what makes people happy, dening criteria for trading-o one person’s
(or selves) happiness against the happiness of another, and advocating social change in a
manner that advances overall happiness by this criterion is a task many neuroeconomists
nd more worthy than dealing with the more pedestrian questions of standard economics.
Ho wever, the expression o f this preference constitutes neither an empirical nor a method-
ological criticism of standard economics.
7. The Unication of Economics and Neuroscience
Neuroeconomists often cite improvements in neuroscience, in particular, improvements
in measurements, as a central reason for unifying the disciplines of economics, psyc h ology,
and brain science:
“Since feelings were meant to predict behavior, but could only be assessed from behav-
ior, economists realized that without direct measurement, feelings were useless inter-
vening constructs. In the 1940s, the concepts of ordinal utility and revealed preference
eliminated the superuous intermediate step of positing immeasurable feelings. Re-
vealed preference theory simply equates unobserved preferences with observed choices.
Circularity is avoided by assuming that people behave consistently, which makes the
theory falsiable; once they have revealed that they prefer A to B, people should not
subsequently choose B over A...... The ‘as if approach made good sense, as long as
the brain remained substantially a black box. The development of economics could not
be held hostage to progress in other human sciences. But now neuroscience has proved
Jevons’ pessimistic prediction wrong; the study of the brain and nervous system is
beginning to allow direct measurement of thoughts and feelings.” (CLP (2005), p. 10).
Thus, neuroeconomists view the revealed preference approach to be an outdated concession
to technological limitations of the past.
18
Since the technology for distinguishing bet ween
“liking” (i.e., a criterion of substantive rationality) and “wanting” ( i.e., ch oice) may soon
18
For Kahneman, the rejection of hedonic utility as the basis for economic analysis of decisions has less
to do with tec hnology than the adherence to an outdated philosoph y of science. Rabin (1996) seems to view
a doctrinaire obstinacy as the only explanation for the persistence of economists’ “habitual” assumptions.
39
be available, econo mics (and presumably other social sciences) should abandon the revealed
preference methodology and adopt the methodology of psychology and neuroscience.
The dominant role of revealed preference analysis in economics has little to do with
technology. Economic phenomena consist of individual choices and their aggregates and
do not include hedonic values of utilities or feelings. Therefore, it is not relevant for an
economic model to explore the feelings associated with economic choices. The poin t of
revealed preference theory is to separate the theory of decision making from the analysis
of emotional consequences of decisions. This separation is useful whether or not emotions
can be measured simply because it facilitates specialization. Note that the m ore detailed
and sophisticated the measurement the greater is the poten tial benet of specialization.
Brain imaging data are of a radically dierent form than typical economic data. If
the prediction of great advances in brain science turn out to be correct, they will certainly
be accomp anied by theoretical advances that address the particular data in that eld. It
is unreasonable to require those theories to be successful at addressing economic data as
well. By the same token, the requirement that economic theories simultaneously account
for economic data and brain imaging data places an unreasonable burden on economic
theories.
Note that the above does not say that psyc hological factors are irrelevant for economic
decision making, nor does it say that economists should ignore psychological insights.
Economists routinely take their inspiration from psychological data or theories. However,
economic models are evaluated by their success at explaining economic phenomena. Since
hedonic utility values or brain imaging data are not economic phenomena, economists
should not feel constrained to choose models that succeed as models o f the brain.
The arguments advanced by neuroeconomists in favor of unication often fail to dis-
tinguish between a novel philosophical position and a scientic breakthrough. Often, what
neuroeconomists present as an empirical challengetoeconomicsisbestviewedasaninvi-
tation to an ethical debate. For example, Kahneman (1994) writes:
“The history of an individual through time can be described as a succession of separate
selves... Which one of these selves should be granted authority over outcomes in the
future?”
40
Hence, neuroeconomics interprets the individual as a awed and inconsistent sequence of
“pleasure mac hines,” that need therapeutic and paternalistic assistance for assessing the
right intertemporal trade-os and making the right choices.
It is not clear what evidence neuroeconomics can oer to answer questions like “should
physicians increase the actual pain experienced by the patient in order to facilitate his
memory and improve his decision making for the future?” (Kahneman (1994)). What is
clear is that nding out how to trade-o the welfare of one self against another or deciding
“[w]hich one of these selves should be granted authority over outcomes in the future,” is
notaneconomicproblem.
CLP (2004) suggest a more modest goal: that neuroscience may facilitate direct mea-
surement of preference parameters by “asking the brain, not the person,” (p. 573). The
authors hav e no example of observing a choice parameter such as the coecient of rel-
ative risk aversion or the discoun t factor through brain imaging, no suggestions as to
how such inference could be done. They oer no criteria for distinguishing a brain where
δ = .97 versus one where δ = .7. They do not explain what language to use when ‘asking
the brain, rather than the person,’ which language the brain will u se to respond, or what
to do when the brain’s answer conicts with the answ er of the person.
In the end, scien tic dev elopments pla y a small role in the arguments of neuroe-
conomists: when it comes to substantiating the central philosophical position that there is
adierence between what people want and what is good for them, subjective readings of
the facial expressions of mice do just as w ell as anything that might be learned from fMRI
readings.
8. Conclusion: Why the Neuroeconomics Critique Fails
Kahneman (1994) notes the following two problems facing “a critic of the rationality
assumption”:
...(ii) a willingness of choice theorists to make the theory even more permissive, as
needed to accommodate apparent violations of its requirements; (iii) a methodological
position that treats rationality as a maintained hypothesis making it very dicult to
dispr ove....”
41
Kahneman’s observations make it clear that rationality is not an assumption in economics
but a methodological stance. This stance reects economists’ decision to view the indi-
vidual as the unit of agency and in vestigate the interaction of the purposeful behaviors of
dierent individuals within various economic institutions. One can question th e usefulness
of this methodological stance by c h allenging individual economic models or the combined
output of economics but one cannot disprove it.
The diculties that Kahnem an observes for critics of the rationality assumption are
no dierent than the diculties that one would encounter when c hallenging the assump-
tion that laboratory experimen t s on individual choice are useful for understanding real-life
behavior. For example, a critic of such experiments may complain that real-life choice
problems do not come with explicit probabilities. If successful, such a criticism will lead
to a new class of experiments, ones that do not make explicit references to probabili-
ties.
19
However, a critic cannot expect to dispro ve the usefulness of experimental methods
for understanding c hoice behavior. Criticisms that aim to disprove a broad and exible
methodology as if it were a single falsiable assumption are best viewed as demands for
a shift in emphasis from questions that the critic considers uninteresting to ones that he
ndsmoreinteresting.
This latter description ts our view of what CLP (2005), Rabin (1998), and Kahneman
(1994) describe as the radical challenge to economics:
“The radical approach involves turning back the hands of time and asking how eco-
nomics might have evolved dierently if it had been informed from the start by insights
and ndings now available from neuroscience. Neuroscience, we will argue, points to
an entirely new set of constructs to underlie economic decision making. The standard
economic theory of constrained utility maximization is most naturally interpreted ei-
ther as the result of learning based on consumption experiences (which is of little help
when prices, income and opportunity sets change), or careful deliberation- a balancing
of the costs and benets of dierent options as might characterize complex decisions
like planning for retirement, buying a house, or hammering out a contract. Although
economists may privately acknowledge that actual esh-and-blood human beings often
19
Compare for example, earlier experiments on the Allais’ Paradox and the common ratio eect with
later experiments on framing and reference points.
42
choose without much deliberation, the economic models as written invariably represent
decisions in a ‘deliberative equilibrium,’ ... (CLP (2005), p. 10).
Populating economic models with esh-and-blood h uman beings,” was never the objective
of economists. Constrained optimization, Bayes law, and oth er economic abstractions do
not represent the state-of-the art psychology of an earlier era. Therefore, there is no reason
to believe that making the state-of-the art psychology of our time available earlier would
have had such a profound eect on the development of economics.
Rabin (1998) argues that
“it is sometimes misleading to conceptualize people as attempting to maximize a co-
herent, stable, and accurately perceived U(x).”
Economists have at their disposal numerous devices to incorporate instabilit y (or change)
into individual preferences. They can assume that the decision-maker’s preferences de-
pend on an exogenous state variable, on the information of his opponen ts, or his own
consumption history. The decision-maker ma y be learning about a relevant preference pa-
rameter, over time. All this exibility or permissiveness not withstanding, it is likely that
the economists’ model of the individual is not suitable for psyc hologists’ goals. It does not
follow from this that economists should adopt both the goals and methods of psychology.
Regardless of the source of their inspiration, economic models can only be evaluated
on their own terms, with respect to their own objectives and evidence. A revolution in eco-
nomics has to yield great economic insights. The CLP and Rabin agendas seem far reach-
ing only because they dene the task of economics as contin ually importing psychology-
neuroscience ideas. Both papers oer ve ry little in the way of nov el economic analysis
or implications. Rabin observes that ...fairness and reference-level eects (reviewed in
Section 2) and framing eects (reviewed in Section 4) are likely to contribute to downward
stickiness in wages” but leaves “it for other forums to explore these implications.” Simi-
larly, all the c hallenges CLP (2005) identify for the emerging discipline of neuroeconomics
resemble the current questions of psycholo gy more than the current questions of econ om i cs.
A choice theory paper in economics must identify the revealed preference implications
of the model presented and describe how revealed preference methods can be used to iden-
tify its parameters. Rev ealed preference earnssuchacentralroleineconomicsbecausethis
43
istheformofevidencethatisavailabletoeconomists-andnotbecauseofaphilosophical
stance against other forms of evidence.
Greater p sychological realism is not an appropriate modeling criterion for economics
and therapeutic social activism is not its goal. Welfare analysis helps economists under-
stand how things are by comparing the existing situation to how things migh t hav e been
in a plausible alternative institutional setting; w e lfare theory is not a blueprint for a social
mo vemen t.
We ma y be sceptical of neuroscien tists’ ability to come up with a univ ersal, physio-
logically grounded criteria for measuring happiness. We may also have doubts about the
potential eectiveness of neuroeconomists at convincing individuals or society as a whole,
to adopt policies that increase “total happiness” by their measure. Our response to the
neuroeconomics welfare theory is simpler: such a combination of moral philosop hy and
activism has never been the goal of economics; grounding this combination in biology is
unlikely to make it so.
44
9. Appendix
Proof of the Proposition
First, we will show that (i) implies (ii): Suppose c is a general oszegi-Rabin choice
function. Then, there exists a reference dependent utility function U such that c = C(·,U).
Dene º as follows: x º y if U(x, x) U(y, x). Then, for all A Y ,
c(A)=C(A, U)={x A | U(x, x) U(y, x)} = {x A | x º y} = C
º
(A)
as desired.
To pro ve that (ii) implies (iii), assume that c = C
º
and let n be the cardinality of X.Recall
that º is a c omplete, reexive, binary relation. We write x  y for x º y and y x.Let
K = X × X.Fork =(w, z) K,wedene the function u
(w,z)
: X {2, 0, 2, 3} as
follows:
u
(w,z)
(x)=
3ifx = w = z
2ifx = w and w  z
2ifx = z and w  z
0otherwise.
Dene the function µ as follows:
µ(t)=
½
16nt if t {4, 3, 4}
t if t {2, 0, 2, 3}
Clearly, µ is strictly increasing and µ(0) = 0. Let
U(x, y)=
X
kK
u
k
(x)+
X
kK
µ(u
k
(x) u
k
(y))
To complete the proof, we will show that C
º
= C(·,U); that is x º y i U(x, x) U(y, x)
for all x, y X,and
U(x, y) U(y, y)impliesU(x, x) >U(y, x)(4)
Note that
2n
X
k6=(x,x)
u
k
(x) ≥−2n ()
45
Let K
x,y
= K\{(y, y), (x, x), (x, y), (y, x)} andnotethatfork K
x,y
2 u
k
(x) u
k
(y) ≥−2(∗∗)
Equations (*) and (**) and the denition of µ imply that
4n
X
K
x,y
(u
k
(x) u
k
(y)) =
X
K
x,y
µ(u
k
(x) u
k
(y)) ≥−4n
Let x º y.Notethatµ(u
(x,y)
(y)u
(x,y)
(x)) 0and,sincex º y,wealsohaveµ(u
(y,x)
(y)
u
(y,x)
(x)) 0. It follows that
U(x, x) U(y, x)=
X
kK
(u
k
(x) u
k
(y))
X
kK
µ(u
k
(y) u
k
(x))
≥−4n
X
K
x,y
µ(u
k
(x) u
k
(y))
µ(u
(x,x)
(y) u
(x,x)
(x)) µ(u
(y,y)
(y) u
(y,y)
(x))
≥−8n +48n 3 > 0
Conversely, let y  x. Then, µ(u
(x,y)
(y)u
(x,y)
(x)) = 0 and µ(u
(y,x)
(y)u
(y,x)
(x)) = 64n.
Therefore,
U(x, x) U(y, x)=
X
kK
(u
k
(x) u
k
(y))
X
kK
µ(u
k
(y) u
k
(x))
4n
X
K
x,y
µ(u
k
(y) u
k
(x)) µ(u
(x,x)
(y) u
(x,x)
(x))
µ(u
(y,y)
(y) u
(y,y)
(x)) µ(u
(y,x)
(y) u
(y,x)
(x))
8n 3+48n 64n<0
Finally, suppose U(x, y) U(y, y) 0. Then,
U(x, x) U(y, x) U(x, x) U(y, x) U(x, y)+U(y, y)
=
X
kK
[µ(u
k
(y) u
k
(x)) + µ(u
k
(x) u
k
(y))]
= 2(µ(3) + µ(3)) = 2(48n 3) > 0
completing the proof that (ii) implies (iii). That (iii) implies (i) is immediate.
46
References
1. Bernheim, B. D. and A. Rangel, 2004. “Addiction and Cue-Conditioned Cognitive Pro-
cesses,” American Economic Review, 94(5): 1558—90.
2. Caplin A, and J. Leahy, 2001. “Psychological Expected Utility Theory and Anticipatory
Feelings,” Quarterly Journal of Economics, 2001, 55—80.
3. Camerer, Colin F., George Loewenstein and Drazen Prelec, 2005. “Neuroeconomics:
Ho w neuroscience can inform economics.” Journal of Economic Literature,Vol.34,No.1.
4. Camerer, Colin F.; George Loew enstein; and Drazen Prelec, 2004. “Neuroeconomics:
Why economics needs brains.” Scandinavian Journal of Economics, 2004, Vol. 106, no. 3,
555—79.
5. Camerer, Colin; Sam uel Issac haro;GeorgeLoewenstein;TedODonoghue;andMatthew
Rabin, 2003. “Regulation for conservatives: Beha vioral economics and the case for ‘asym-
metric paternalism’.” Univ. Penn. Law Review, Vol. 151, 2111—1254.
6. Epstein, L. and S. Zin, 1989. “Substitution, Risk Aversion, and the temporal Behavior
of Consumption and Asset Returns: A Theoretical Framework,” Econometrica 57, 937-69.
6. Epstein, L. and S. Zin, 1991. “Substitution, Risk Aversion, and the temporal Behavior
of Consumption and Asset Returns: An Empirical Analysis,” Journal of Political Economy
99, 2, 263-86.
7.Frederick,S.,G.Loewenstein,T.ODonoghue,“TimeDiscountingandTimePreference:
A Critical Review” Journal of Economic Literature, 2002, XL (2): 351—402.
8.Gruber,J.andB.K¨oszegi, “Is Addiction “Rational”? Theory and Evidence”, Quarterly
Journal of Economics, 2001: 1261—1303.
9. Gul, F. and W. Pesendorfer, “Temptation and Self-Control,” Econometrica, 2001, 69(6):
1403—1436.
10.Gul,F.andW.Pesendorfer,2004.“Self-Control and the Theory of Consumption,”
Econometrica.
11.Gul,F.andW.Pesendorfer,2005.“TheRevealedPreferenceTheoryofChanging
Tastes, Review of Economic Studies.
12.Hsu,MingandCamerer,ColinF.,2004,Ambiguity-Ave rsion in the Brain. Caltech,
Working Paper.
13. Kahneman, D., 1994. “New challenges to the rationality assumption.” Journal of In-
stitutional and Theoretical Economics, 150, 18—36.
14.Kreps,D,1979.”APreferenceforFlexibility,Econometrica, 47: 565—576.
47
15. Kreps, D. and E. L. Porteus, 1978. “Temporal Resolution of Uncertainty and Dynamic
Choice Theory,” Econometrica.
16. Koszegi, B. and M. Rabin, 2004. “A Model of Reference-Dependent Preferences,”
mimeo.
17. Laibson, D., 1997. “Golden Eggs and Hyperbolic Discoun t ing,” Quarterly Journal of
Economics, 112: 443—477.
18. Laibson, D avid. 2001. A Cue-Theory of Consumption. The Quarterly Journal of Eco-
nomics, 116(1): 81—119.
19. Loewenstein, G., 1996. “Out of Control: Visceral Inuences on Beha vior,” Organiza-
tional Behavior and Human Decision Processes, 65, 272—292.
20. Loewenstein, G. and D. Prelec, “Anomalies in Intertemporal Choice,” Quarterly Jour-
nal of Economics, 1992, 107, 573—597.
21. O’Donoghue and Rabin, “D oing it Now or Later,” American Economic Review, 1999,
89(1): 103—124.
22. O’Donoghue and Rabin, “Studying Optimal Paternalism, Illustrated with a Model of
Sin Taxes,” American Economic Review Papers and Proceedings, May 2003, 93(2), 186—
191.
23. Rabin M., “A Perspective on Psyc hology and Economics,” European Economic Review,
forthcoming, 2002.
24. Rabin M., “Psychology and Economics,” Journal of Economic Literature, 36, pp. 11—46,
March 1998.
25. Strotz, R. H., 1956. “Myopia and Inconsistency in Dynamic Utility Maximization,”
Review of Economic Studies, 23(3): 165—180.
26. Thaler, R., 1980. Towards a positive theory of consumer choice. Journal of Economic
Behavior and Organization, 1, 39—60.
48